Response of anterior parietal cortex to cutaneous flutter versus vibration.
نویسندگان
چکیده
The response of anesthetized squirrel monkey anterior parietal (SI) cortex to 25 or 200 Hz sinusoidal vertical skin displacement stimulation was studied using the method of optical intrinsic signal (OIS) imaging. Twenty-five-Hertz ("flutter") stimulation of a discrete skin site on either the hindlimb or forelimb for 3-30 s evoked a prominent increase in absorbance within cytoarchitectonic areas 3b and 1 in the contralateral hemisphere. This response was confined to those area 3b/1 regions occupied by neurons with a receptive field (RF) that includes the stimulated skin site. In contrast, same-site 200-Hz stimulation ("vibration") for 3-30 s evoked a decrease in absorbance in a much larger territory (most frequently involving areas 3b, 1, and area 3a, but in some subjects area 2 as well) than the region that undergoes an increase in absorbance during 25-Hz flutter stimulation. The increase in absorbance evoked by 25-Hz flutter developed quickly and remained relatively constant for as long as stimulation continued (stimulus duration never exceeded 30 s). At 1-3 s after stimulus onset, the response to 200-Hz stimulation, like the response to 25-Hz flutter, consisted of a localized increase in absorbance limited to the topographically appropriate region of area 3b and/or area 1. With continuing 200-Hz stimulation, however, the early response declined, and by 4-6 s after stimulus onset, it was replaced by a prominent and spatially extensive decrease in absorbance. The spike train responses of single quickly adapting (QA) neurons were recorded extracellularly during microelectrode penetrations that traverse the optically responding regions of areas 3b and 1. Onset of either 25- or 200-Hz stimulation at a site within the cutaneous RF of a QA neuron was accompanied by a substantial increase in mean spike firing rate. With continued 200-Hz stimulation, however, QA neuron mean firing rate declined rapidly (typically within 0.5-1.0 s) to a level below that recorded at the same time after onset of same-site 25-Hz stimulation. For some neurons, the mean firing rate after the initial 0.5-1 s of an exposure to 200-Hz stimulation of the RF decreased to a level below the level of background ("spontaneous") activity. The decline in both the stimulus-evoked increases in absorbance in areas 3b/1 and spike discharge activity of area 3b/1 neurons within only a few seconds of the onset of 200-Hz skin stimulation raised the possibility that the predominant effect of continuous 200-Hz stimulation for >3 s is inhibition of area 3b/1 QA neurons. This possibility was evaluated at the neuronal population level by comparing the intrinsic signal evoked in areas 3b/1 by 25-Hz skin stimulation to the intrinsic signal evoked by a same-site skin stimulus containing both 25- and 200-Hz sinusoidal components (a "complex waveform stimulus"). Such experiments revealed that the increase in absorbance evoked in areas 3b/1 by a stimulus having both 25- and 200-Hz components was substantially smaller (especially at times >3 s after stimulus onset) than the increase in absorbance evoked by "pure" 25-Hz stimulation of the same skin site. It is concluded that within a brief time (within 1-3 s) after stimulus onset, 200-Hz skin stimulation elicits a powerful inhibitory action on area 3b/1 QA neurons. The findings appear generally consistent with the suggestion that the activity of neurons in cortical regions other than areas 3b and 1 play the leading role in the processing of high-frequency (>/=200 Hz) vibrotactile stimuli.
منابع مشابه
Response of anterior parietal cortex to different modes of same-site skin stimulation.
Response of anterior parietal cortex to different modes of same-site skin stimulation. J. Neurophysiol. 80: 3272-3283, 1998. Intrinsic optical signal (IOS) imaging was used to study responses of the anterior parietal cortical hindlimb region (1 subject) and forelimb region (3 subjects) to repetitive skin stimulation. Subjects were four squirrel monkeys anesthetized with a halothane/nitrous oxid...
متن کاملDifferentiation of visceral and cutaneous pain in the human brain.
The widespread convergence of information from visceral, cutaneous, and muscle tissues onto CNS neurons invites the question of how to identify pain as being from the viscera. Despite referral of visceral pain to cutaneous areas, individuals regularly distinguish cutaneous and visceral pain and commonly have contrasting behavioral reactions to each. Our study addresses this dilemma by directly ...
متن کاملHomayoun as a Persian Music Scale on Non-Musician’s Brain: an fMRI Study
Introduction: The aim of this study was to get to a neurological evaluation of one of the Persian music scales, Homayoun, on brain activation of non-musician subjects. We selected this scale because Homayoun is one of the main scales in Persian classical music which is similar to minor mode in western scales. Methods: This study was performed on 19 right handed subjects, Aging 22-31. Here some ...
متن کاملFine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging.
Optical imaging of intrinsic cortical activity was used to study the somatotopic map and the representation of pressure, flutter, and vibration in area 3b of the squirrel monkey (Saimiri sciureus) cortex under pentothal or isoflurane anesthesia. The representation of the fingerpads in primary somatosensory cortex was investigated by stimulating the glabrous skin of distal fingerpads (D1-D5) wit...
متن کاملTreatment of chronic cutaneous graft versus host disease (GVHD) with photochemotherapy with Psoralen (PUVA): A report of five cases
Chronic graft versus host disease (GVHD) remains the most common late complication of allogenic stem cell transplantation and the most frequent cause of morbidity and mortality in these patients. To control this condition, immunosuppressive drugs are usually administered at a high dose and for a long time, which may result in several side effects. 5 patients with clinically and histopathologica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 1 شماره
صفحات -
تاریخ انتشار 1999